【练习】Option Pricing
基于ECON5020期末考试试题;
Option pricing;
Question:
Consider a multi-period market model $M=(B,S)$ with two assets: the saving account $B$ and the risky asset $S$. For a natural number $T$, consider the following model for the price of the risky asset $S$:
where the random variables $Y_1,…,Y_T$ are independent and identically distributed under the real-world probability measure $\mathbb{P}$, specifically,
where $a>0$ is a strictly positive constant. We assume that the risk-free rate $r=0$ so that the savings account equals $B_t=1$ for every $t=0,1,…,T$.
- Check whether the model $M=(B,S)$ is arbitrage-free and complete.
- Find the option price process $\pi_t(X)$, $t=0,1,2,3$ and the replicating strategy $\varphi=(\varphi_0,\varphi_1)$
Answer:
Q1
我们可以看到,在给定前一个时刻的股票价格时,每个时间$t$都存在两个状态。分别是$+a$增长一个值,或者$-a$减少一个值,所以这是个$binomial tree$。为了判断模型是不是无套利的,我可以用定义:当$d<1+r<u$ 时无套利。其中$d=\frac{s_t}{s_{t-1}}=\frac{s_{t-1}-a}{s_{t-1}}=1-\frac{a}{s_{t-1}}$,$u=\frac{s_t}{s_{t-1}}=\frac{s_{t-1}+a}{s_{t-1}}=1+\frac{a}{s_{t-1}}$, 所以等式成立。
Q2
主要流程使用 $Backward induction$.
已知$T=3$,可以先画出股价的变动图。后续会往内补充数字:
t=0 | t=1 | t=2 | t=3 | value at T |
---|---|---|---|---|
$S_0+3a$ , $\omega_1$ | $\gets x_1$ | |||
$S_0+2a$ | ||||
$S_0+a$ | $S_0+a$ , $\omega_2$ | $\gets x_2$ | ||
$S_0$ | $S_0$ | |||
$S_0-a$ | $S_0-a$ , $\omega_3$ | $\gets x_3$ | ||
$S_0-2a$ | ||||
$S_0-3a$ , $\omega_4$ | $\gets x_4$ |
因为$X$ 没给定明确的值,我们假设在时间$T$ 有四个状态$\{\omega_1,\omega_2,\omega_3,\omega_4\}$, 同时还有对应的价值$\{x_1,x_2,x_3,x_4\}$。对应$multi-period$ 的模型,需要有$self-financing$ 的过程:
对应最后时间$T$我们需要有以下式子:
然后开始从后向前推导:
From $t:2 \to 3$ where $A_1=\{\omega_1,\omega_2\}$
we find that $(\varphi_0^2,\varphi_1^2)=(x_1-\frac{(S_0+3a)(x_1 - x_2)}{2a},\frac{x_1-x_2}{2a})$
and $\pi_2(A_1)=x_1-\frac{(S_0+3a)(x_1 - x_2)}{2a}+\frac{(S_0+2a)(x_1-x_2)}{2a}=x_1-\frac{x_1 - x_2}{2}=\frac{x_1 + x_2}{2}$
From $t:2 \to 3$ where $A_2=\{\omega_2,\omega_3\}$
we find that $(\varphi_0^2,\varphi_1^2)=(x_2-\frac{(S_0+a)(x_2 - x_3)}{2a},\frac{x_2-x_3}{2a})$
and $\pi_2(A_2)=x_2-\frac{(S_0+a)(x_2 - x_3)}{2a}+\frac{S_0(x_2-x_3)}{2a}=x_2-\frac{x_2 - x_3}{2}=\frac{x_2 + x_3}{2}$
From $t:2 \to 3$ where $A_3=\{\omega_3,\omega_4\}$
we find that $(\varphi_0^2,\varphi_1^2)=(x_3-\frac{(S_0-a)(x_3 - x_4)}{2a},\frac{x_3-x_4}{2a})$
and $\pi_2(A_3)=x_3-\frac{(S_0-a)(x_3 - x_4)}{2a}+\frac{(S_0-2a)(x_3-x_4)}{2a}=x_2-\frac{x_3 - x_4}{2}=\frac{x_3 + x_4}{2}$
From $t:1 \to 2$ where $A_u=\{A_1,A_2\}$
we find that $(\varphi_0^1,\varphi_1^1)=(\frac{x_1 + x_2}{2}-\frac{(S_0+2a)(x_1 - x_3)}{4a},\frac{x_1-x_3}{4a})$
and $\pi_1(A_u)=\frac{x_1 + x_2}{2}-\frac{(S_0+2a)(x_1 - x_3)}{4a}+\frac{(S_0+a)(x_1-x_3)}{4a}=\frac{x_1 + x_2}{2}-\frac{x_1 - x_3}{4}=\frac{x_1 + 2x_2-x_3}{4}$
From $t:1 \to 2$ where $A_d=\{A_2,A_3\}$
we find that $(\varphi_0^1,\varphi_1^1)=(\frac{x_2 + x_3}{2}-\frac{S_0(x_2 - x_4)}{4a},\frac{x_2-x_4}{4a})$
and $\pi_1(A_u)=\frac{x_2 + x_3}{2}-\frac{S_0(x_2 - x_4)}{4a}+\frac{(S_0-a)(x_2-x_4)}{4a}=\frac{x_2 + x_3}{2}-\frac{x_2 - x_4}{4}=\frac{x_2 + 2x_3-x_4}{4}$
From $t:0 \to 1$ where $A_0=\{A_u,A_d\}$
we find that $(\varphi_0^0,\varphi_1^0)=(\frac{x_1 + 2x_2-x_3}{4}-\frac{(S_0+a)(x_1 +x_2 -x_3 -x_4)}{8a},\frac{x_1 +x_2 -x_3 -x_4}{8a})$
总结
题目的难度不大,主要在计算过程中比较繁杂的化简,选择性化简是比较重要的,我们可以发现$(S_0+a)$通常都作为一个整体出现,所以无需拆分。同时因为这道题特别的对仗工整,我们可以发现在同一时间$t$下的计算特别相似,所以有时可以采用直接替换数字。当计算时,如果出现了不友好的数字,比如一些没有规律的,与上下式子不对应的答案,可以检查过程中是否出现,少除,错减之类的。
Matlab代码
1 |
|