【练习】BS Model To BS PDE

基于B站 up Jerry Xu 的视频《Ito积分练习题(Part 1)》

从 BS model 反向推符合 PDE

Question

For a European Call option at time T, with strike price K.

where

Show that this function satisfies the BS-PDE

with

Step

(1) Show that $Ke^{-r(T-t)}N’(d_-)=xN’(d_+)$;

原问题可以转换为

where

Set $A=ln\frac xK+r(T-t)$, $B=\frac12\sigma^2(T-t)$

(2) Show that Delta $c_x(t,x)=N(d_+)$

行权价值附近,斜率最大,Delta 约等于 1/2

(3) Show $c_t(t,x)=-rKe^{-r(T-t)}N(d_-)-\frac{\sigma x}{2\sqrt{T-t}}N’(d_+)$

(4) Prove that satisfies

(5) Calculate $\lim_{t\to T}d_+$ and $\lim_{t\to T}d_-$ for $x>0$, $x\ne K$.

If $x>K$:

If $x<K$:

(6) Calculate $\lim_{x\to 0}d_+$ and $\lim_{x\to 0}d_-$ for $0\leq t<T$.

(7) Calculate $\lim_{x\to \infty}d_+$ and $\lim_{x\to \infty}d_-$ for $0\leq t<T$.

Hint for (7):From the formula of $d_+$, we can obtain that


【练习】BS Model To BS PDE
http://achlier.github.io/2021/06/20/Exercise_2/
Author
Hailey
Posted on
June 20, 2021
Licensed under