【笔记】高等数学复习笔记-微积分

基于 ChiuFai WONG 教授的线性代数课件的笔记;

与网上资料结合进行整理;

对于部分基础多有忽略,主要用于知识点查找;

函数的可导性与连续性之间的关系

Th1: 函数$f(x)$在$x_0$处可微$\Leftrightarrow f(x)$在$x_0$处可导

Th2: 若函数在点$x_0$处可导,则$y=f(x)$在点$x_0$处连续,反之则不成立。即函数连续不一定可导。

Th3: $f’(x_{0})$存在$\Leftrightarrow f’_{-}(x_{0})=f’_{+}(x_{0})$

平面曲线的切线和法线

切线方程 : $y-y_{0}=f’(x_{0})(x-x_{0})$

法线方程:$y-y_{0}=-\frac{1}{f’(x_{0})}(x-x_{0}),f’(x_{0})\ne 0$

渐近线的求法

  1. 水平渐近线 若$\underset{x\to +\infty }{\mathop{\lim }}\,f(x)=b$,或$\underset{x\to -\infty }{\mathop{\lim }}\,f(x)=b$,则

    $y=b$称为函数$y=f(x)$的水平渐近线。

  2. 铅直渐近线 若$\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,f(x)=\infty $,或$\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,f(x)=\infty $,则

    $x=x_{0}$称为$y=f(x)$的铅直渐近线。

  3. 斜渐近线 若$a=\underset{x\to \infty }{\mathop{\lim }}\,\frac{f(x)}{x},\quad b=\underset{x\to \infty }{\mathop{\lim }}\,[f(x)-ax]$,则$

    y=ax+b$称为$y=f(x)$的斜渐近线。

函数凹凸性的判断

Th1: (凹凸性的判别定理)若在 I 上$f’’(x)<0$(或$f''(x)>0$),则$f(x)$在 I 上是凸的(或凹的)。

Th2: (拐点的判别定理 1)若在$x_{0}$处$f’’(x)=0$,(或$f’’(x)$不存在),当$x$变动经过$x_{0}$时,$f’’(x)$变号,则$(x_{0},f(x_{0}))$为拐点。

Th3: (拐点的判别定理 2)设$f(x)$在$x_{0}$点的某邻域内有三阶导数,且$f’’(x)=0$,$f’’’(x)\ne 0$,则为拐点。

四则运算法则

设函数$u=u(x),v=v(x)$在点$x$可导则

  1. $(u\pm v{)}’={u}’\pm {v}’$ $d(u\pm v)=du\pm dv$
  2. $(uv{)}’=u{v}’+v{u}’$ $d(uv)=udv+vdu$
  3. $(\frac{u}{v}{)}’=\frac{v{u}’-u{v}’}{v^{2}}(v\ne 0)$ $d(\frac{u}{v})=\frac{vdu-udv}{v^{2}}$

微分中值定理

费马定理

函数$f(x)$在$x_{0}$的某邻域内有定义,并且在此邻域内恒有 $f(x)\le f(x_{0})$或 $f(x)\ge f(x_{0})$,且 $f(x)$在$x_{0}$处可导,则有 ${f}’(x_{0})=0$

罗尔定理 Rolle’s Theorem

Let $f$ be continuous on a closed interval $[a, b]$ and differentiable on $(a, b)$ with $f (a) = f (b)$ . There is at least one point $c$ in $(a, b)$ such that $f’(x)=0$

拉格朗日中值定理 Lagrange Mean Value Theorem

Let $f$ be continuous on a closed interval $[a, b]$ and differentiable on $(a, b)$ , then there is at least one point $x$ in $(a, b)$ such that

柯西中值定理 Cauchy mean value theorem

Let $f,g$ be continuous on a closed interval $[a, b]$ and differentiable on $(a, b)$ with ${g}’(x)\ne 0$,then there is at least one point $x$ in $(a, b)$ such that

洛必达法则 L’Hôpital’s Rule

$0/0$ 型

Suppose $f$ and $g$ are differentiable on an open interval $I$ containing $a$ with $g(x)\ne 0$ on $I$ . when $x\ne a$ .

If $\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=0$, then

Proof:

$\infty/\infty$ 型

If $\lim_{x\to a}f(x)=\pm\infty$ and $\lim_{x\to a}g(x)=\pm\infty$, then

Proof:

Let $F(x)=f(x)^{-1}$ and $G(x)=g(x)^{-1}$. Then $\lim_{x\to a}F(x)=\lim_{x\to a}G(x)=0$

特殊情况中转换成 $0/0$ 型的方法

  1. $0\cdot\infty: \lim_{x\to a}\underbrace{f(x)}_{\to0}\underbrace{g(x)}_{\to\infty}=\lim_{x\to a}\frac{\overbrace{f(x)}^{\to0}}{\underbrace{g(x)^{-1}}_{\to0}}$
  2. $\infty-\infty: \lim_{x\to a}(\underbrace{f(x)}_{\to\infty}-\underbrace{g(x)}_{\to\infty})=\lim_{x\to a}(\underbrace{\frac1{f(x)^{-1}}}_{\to0}-\underbrace{\frac1{g(x)^{-1}}}_{\to0})=\lim_{x\to a}\frac{\overbrace{g(x)^{-1}-f(x)^{-1}}^{\to0}}{\underbrace{f(x)^{-1}g(x)^{-1}}_{\to0}}$
  3. $0^{0}: \lim _{x \to a} \underbrace{f(x)^{\overbrace{g(x)}^{\to 0}}}_{\to 0}=\lim _{x \to a} e^{\overbrace{g(x)}^{\to0} \overbrace{\ln f(x)}^{\to -\infty}}=e^{\lim_{x\to a}\overbrace{g(x)}^{\to0} \overbrace{\ln f(x)}^{\to -\infty}}$ reduced to case (1);
  4. $1^{\infty}: \lim _{x \to a} \underbrace{f(x)^{\overbrace{g(x)}^{\to \infty}}}_{\to 1}=\lim _{x \to a} e^{\overbrace{g(x)}^{\to\infty} \overbrace{\ln f(x)}^{\to0}}=e^{\lim_{x\to a}\overbrace{g(x)}^{\to\infty} \overbrace{\ln f(x)}^{\to 0}}$ reduced to case (1);
  5. $\infty ^{0}: \lim _{x \to a} \underbrace{f(x)^{\overbrace{g(x)}^{\to 0}}}_{\to 0}=\lim _{x \to a} e^{\overbrace{g(x)}^{\to0} \overbrace{\ln f(x)}^{\to \infty}}=e^{\lim_{x\to a}\overbrace{g(x)}^{\to0} \overbrace{\ln f(x)}^{\to \infty}}$ reduced to case (1);

泰勒公式

设函数$f(x)$在点$x_{0}$处的某邻域内具有$n+1$阶导数,则对该邻域内异于$x_{0}$的任意点$x$:

当 $x_0=0$ 时,为麦克劳林公式

Growth Rates of Functions (as $x\to\infty$)

Let $f\ll g$ mean that $g$ grows faster than $f$ as $x\to\infty$ . With positive real number $p, q, r, s$, and $a >1$,

Growth Rates of Sequences

The following sequences are ordered according to increasing growth rates as $n\to\infty$; that is, if $\{a_n\}\ll\{b_n\}$ in the list, then $\lim_{n\to\infty}\frac{a_n}{b_n}=0$:

Integration by parts

the Product Rule states that

By integrating both sides, we have

Rearranging this expression, integration by parts for indefinite integral is

Similarly, integration by parts for definite integral is

Beta function

Let $m, n$ be two non-negative integers. Define

Strategies for solving $\int\sin^mx \cos^nx dx$

(i) $\quad m=2 k+1$ odd, $n$ real

(ii) $m$ real, $n=2 l+1$ odd

(iii) both $m=2 k$ and $n=2 l$ nonnegative even integers

Method 1:

Use $\sin ^{2} x=\frac{1-\cos 2 x}{2}$ and $\cos ^{2} x=\frac{1+\cos 2 x}{2}$ to transform $\sin ^{2 k} x \cos ^{2 l} x$ into a polynomial in $\cos 2 x$;

and apply the preceding strategies once again to powers of $\cos 2 x$ greater than 1.

Method 2:

and apply reduction formula (b) in Reduction Formulas for Power of Trigonometric Functions to each term on the right after expansion.

特殊例题

Exponential constant

Method 1:

Method 2:

By L’Hôpital’s rule

扩展:

Then

Furthermore

Squeeze Theorem 例题

Proof:

Area of $\Delta O A D=\frac{1}{2}(O D)(A D)=\frac{1}{2} \cos x \sin x $

$角度(x)=弧长/半径$ ,Area of sector $O A C=\frac{1}{2} \cdot 1^{2} \cdot x=\frac{x}{2} $

Area of $ \triangle O B C=\frac{1}{2}(O C)(B C)=\frac{1}{2} \tan x$

Since area of $\triangle O A D< $ area of $ O A C<$ area of $\triangle O B C$ , we have

Hence

we find that

By Squeeze Theorem

Similarly

Therefore

$\ln$ 求导的辅助作用

可转换成以下方程求导

公式查找表

常用泰勒公式

基本导数与微分表

三角函数公式表

常用高阶导数公式

  1. $\left(a^{x}\right)^{(n)}=a^{x} \ln ^{n} a \quad(a>0) \quad ; \quad\left(e^{x}\right)^{(n)}=e^{x}$

  2. $(\sin k x)^{(n)}=k^{n} \sin \left(k x+n \cdot \frac{\pi}{2}\right)$

  3. $(\cos k x)^{(n)}=k^{n} \cos \left(k x+n \cdot \frac{\pi}{2}\right)$

  4. $\left(x^{m}\right)^{(n)}=m(m-1) \cdots(m-n+1) x^{m-n}$

  5. $(\ln x)^{(n)}=(-1)^{(n-1)} \frac{(n-1) !}{x^{n}}$

  6. 莱布尼兹公式 (Leibniz’s) :若$u(x)\,,v(x)$均$n$阶可导,则

    其中$u^{(0)}=u$,$v^{(0)}=v$

Reduction Formulas for Power of Trigonometric Functions

三角函数替换


【笔记】高等数学复习笔记-微积分
http://achlier.github.io/2022/07/29/高等数学复习笔记-微积分/
Author
Hailey
Posted on
July 29, 2022
Licensed under