【笔记】高等数学复习笔记-随机过程
基于 ChiuFai WONG 教授的随机过程课件的笔记;
结合应坚刚教授的随机分析讲义;
程士宏教授测度论与概率论基础进行整理;
对于部分基础多有忽略,主要用于知识点查找;
1. 概率论预备知识
1.1 集合的运算
分别称为集合 A 和 B 的并, 交, 差和对称差. 如 $B \subset A$ , 则 $A \backslash B$ 也称为 A 和 B 的真差.
1.2 单调序列
设 $\left\{A_{n}, n=1,2, \cdots\right\}$ 是一个集合序列. 如果对每个 $n=1,2, \cdots$ , 有
则称 $A_{n}$ 为非降的, 记为 $A_{n} \uparrow$ , 并把集合 $\lim_{n \rightarrow \infty} A_{n} \stackrel{ def }{=} \bigcup_{n=1}^{\infty} A_{n} $ 叫做它的极限;
如果对每个 $n=1,2, \cdots$ , 有
则称 $A_{n}$ 为非增的, 记为 $A_{n} \downarrow$ , 并称 $\lim_{n \rightarrow \infty} A_{n} \stackrel{ def }{=} \bigcap_{n=1}^{\infty} A_{n}$ 为它的极限. 非降或非增的集合序列统称为单调序列. 因此, 单调集合序列总有极限.
对于任意给定的一个集合序列 $\left\{A_{n}, n=1,2, \cdots\right\} $ , 集合序列非降和非增分别有极限
注意第二个运算符的范围是从 n 到 $\infty$ ,因此左边是非减右侧是非增
我们将把 $\liminf _{n \rightarrow \infty} A_{n}$ 和 $\lim _{n \rightarrow \infty} \sup A_{n}$ 分别叫做 $\left\{A_{n}, n=1,2, \cdots\right\}$ 的下极限和上极限.
1.3 集合系
以空间 X 中的一些集合为元素组成的集合成为 X 上的集合系,一般用花体字母来表示。
$\pi$ 系:如果 X 上的非空集合系 $\mathscr{P}$ 对交是运算是封闭的,即
则称 $\mathscr{P}$ 为 $\pi$ 系
半环:满足 $\pi$ 系要求的基础上,对任意的 $A,B\in\mathscr{Q}$ 且 $A\supset B$,存在有限个两两不相交的 $\{C_k\in\mathscr{Q},k=1,…,n\}$ 使得
环:如果 X 上的非空集合系 $\mathscr{R}$ 对并和差是运算是封闭的,则称 $\mathscr{R}$ 为 环
域:满足 $\pi$ 系要求的基础上
$\lambda$ 系:集合系 $\mathscr{L}$ 称为 $\lambda$ 系,如果它满足下列条件
$\sigma$ 域:集合系 $\mathscr{F}$ 称为 $\sigma$ 域,如果它满足下列条件
Borel 集合系:$\mathscr{O}_R$ 为 $R$ 中开集组成的集合系
1.4 事件域与信息
一个随机现象可能出现的所有结果称为样本空间 $\Omega$,$\mathscr{F}$ 是 $\Omega$ 的子集组成的集合,如果满足
- $\emptyset, \Omega \in \mathscr{F}$
- 如果 $A \in \mathscr{F}$, 则 $A^{c} \in \mathscr{F}$
- 如果 $A_{n} \in \mathscr{F}, n \geq 1$ , 则 $\bigcup_{n} A_{n} \in \mathscr{F}$
则可称 $\mathscr{F}$ 为一个事件域,属于由 $\Omega$ 生成的 $\sigma$ 域 $\sigma(\Omega)$,而 $(\Omega,\mathscr{F},\mathbb{P})$ 是一个概率空间
2. 条件期望
2.1 期望和数字特征
连续性或者单调收敛定理:如果 $\xi_n$ 是非负递增的随机序列,那么
期望是随机变量的一个数字特征, 或者说是分布的数字特征, 表示平均. 这是最有用的, 它是使得函数 $f(x)=\mathbb{E}\left[(\xi-x)^{2}\right]$ 达到最小值的地方, 通常两个随机变量 $\xi, \eta$ 的均方距离定义为
那么期望是实数空间中离 $\xi$ 的均方距离最近的数字. 实数空间是关于最少信息 $\{\empty,\Omega\}$ 可测的随机变量全体.
2.2 条件期望的直观
让我们用 Hilbert 空间的眼光看条件期望的问题, 我们已经有一个 Hilbert 空间 $ L^{2}(\Omega, \mathscr{F}, \mathbb{P}) $ , 关于部分信息 $ \mathscr{G} $ 可测的平方可积随机变量全体 $ L^{2}(\Omega, \mathscr{G}, \mathbb{P})$ 是 $ L^{2}(\Omega, \mathscr{F}, \mathbb{P}) $ 的闭子空间.
空间 $ L^{2}(\Omega, \mathscr{G}, \mathbb{P})$ 中距离 $\xi$ 最近的那个随机变量记为 $\mathbb{E}[\xi|\mathscr{G}]=\eta$ ,等价于说 $\eta$ 是 $\xi$ 在子空间上的正交投影,即 $\xi-\eta$ 与子空间垂直或者说正交,对于任何 $\zeta\in L^{2}(\Omega, \mathscr{G}, \mathbb{P})$ 有
2.3 条件期望的性质
条件期望是线性算子
$\mathbb{E}[\xi \mid\{\emptyset, \Omega\}]=\mathbb{E}[\xi]$
如果 $\xi$ 是 $\mathscr{G}$ 可测的, 那么 $\mathbb{E}[\xi \mid \mathscr{G}]=\xi$ . 这是因为投影算子在闭子空间自身上是恒等算子.
条件期望有保正性: 如果 $\xi \geq 0$ a.s., 那么 $\mathbb{E}[\xi \mid \mathscr{G}] \geq 0$ a.s. 事实上, 由定义的第二条推出, 对任何 $A \in \mathscr{G}$ 有 $\mathbb{E}[\mathbb{E}[\xi \mid \mathscr{G}] ; A] \geq 0$, 因此 $\mathbb{E}[\xi \mid \mathscr{G}] \geq 0$.
塔性 (相容性): 如果 $\mathscr{G}_{1} \subset \mathscr{G}_{2}$ 是两个子事件域, 那么
如果 $\xi$ 在大的子空间上投影然后再投影到小的子空间上,等于它自己投影到小的子空间上
如果 $\eta$ 是 $ \mathscr{G}$ 可测的随机变量, 那么
如果 $ \xi $ 与 $ \mathscr{G}$ 独立, 那么 $ \mathbb{E}[\xi \mid \mathscr{G}]=\mathbb{E} \xi$. 也就是说, $ \mathscr{G} $ 代表的信息对于预测 $ \xi $ 没有任何作用.
3. Discrete Markov Chain
- P denote the one-step transition matrix of probabilities
- A state $i$ is said to be absorbing if once entered they are never left
- the n-step transition probabilities ,$P_{i,j}^n$ to be the probability that a process in state i will be in state j after n additional transitions.
- Two states that communicate are said to be in the same class.
- $f_{i,j}^n$ to be the probability that, starting in i, the first transition into j occurs at time n.
- State i is said to be recurrent if $f_{i,i}=1$ and transient if $f_{i,i}<1$
- State i is said to be recurrent if $\sum_{n=0}^{\infty} P_{i, i}^{n}=\infty$ and transient if $\sum_{n=0}^{\infty} P_{i, i}^{n}<\infty$
- $P_{i, j}^{n}=f_{i, j}^{n}+f_{i, j}^{n-1} P_{j, j}^{1}+\cdots+f_{i, j}^{1} P_{i, i}^{n-1} \quad n \geq 1$
Theorem 1
Let $P_{i, j}(z)=\sum_{n=0}^{\infty} P_{i, j}^{n} z^{n}$ be the probability generating function of number of transition entering state $j$ starting from state $i$ and let $\delta_{i, j}=\left\{\begin{array}{cc}1 & \text { if } i=j \ 0 & \text { otherwise. }\end{array}\right.$ Then $P_{i, j}(z)=\delta_{i, j}+f_{i, j}(z) P_{j, j}(z)$. In particular,
Theorem 2
Let $T$ denote the set of all transient states. If $j$ is recurrent, then the set of probabilities $\left\{f_{i, j}, i \in T\right\}$ satisfies
where $R_{j}$ denotes the set of recurrence states communicating with $j$.
Theorem 3
Assuming that successive plays of the game are independent, what is the probability that, starting with $i$ units, the gambler’s fortune will reach $N$ before reaching 0?
The expected number of bets that the gambler starting at $k, 0 < k < N$, will reach $0$ or $N$ is
let $m_{i,j}$ denote the expected number of visits in state $j$, given that
it starts in state $i$.
$m_{i, j}=\delta_{i, j}+\sum_{k} P_{i, k} m_{k, j}$, $M=I_{t}+P_{T} M\to M=\left(I_{t}-P_{T}\right)^{-1}$
$f_{i, j}=\frac{m_{i, j}-\delta_{i, j}}{m_{j, j}}$
A state with period 1 is said to be aperiodic
$\mu_{i,j}$ denote the expected number of transition need to return state $i$. That is, $\mu_{i,i}=\sum_{n=1}^\infty nf_{i,i}^n$
If the expected recurrence time is finite then this is called positive-recurrent; if the expected recurrence time is infinite then this is called null recurrent. Positive recurrent, aperiodic states are called ergodic.
Stirling’s approximation
for $n$ large
1-dimensional Simple Random Walk
- The chain is recurrent when $p=\frac12$ and transient if $p\ne\frac12$
Because $f_{0,1}(z)=pz+(qz)f_{0,1}(z)f_{-1,0}(z)=pz+(qz)f_{0,1}(z)^2$
we obtain
So $p_{2n-1}=\frac{(2 n-2) !}{n !(n-1) !} p^{n} q^{n-1}$. As the same $q_{2n-1}=\frac{(2 n-2) !}{n !(n-1) !} p^{n-1} q^{n}$.
Then
And
if $p=q$
- $\pi_j=\sum_i\pi_jP_{i,j}$ is called stationary probability.
- $\pi_j=\lim_{n\to\infty}P_{i,j}^n$ and $\pi P=\pi\to\pi(P-I)=0$
For an irreducible Markov chain, suppose state $i$ has period $d$
4. Poisson Process
$\lambda$ is called the rate of the process
$\{T_n,n=1,2,…\}$ is called the sequence of interarrival times.
$T_1$ has an exponential distribution with mean $1/\lambda$.
$S_n=\sum_{i=1}^nT_i,n\ge 1$ called the waiting time until the nth event
$S_n$ has a gamma distribution with parameters n and $\lambda$, and $P\left(S_{n} \leq t\right)=P(N(t) \geq n)$
5. Brownian Motion
Define
the position at time t, is
Now
Then
Theorem 1
Set $W\left(t_{1}\right)=x_{1}, W\left(t_{2}\right)=x_{2}, \cdots, W\left(t_{m}\right)=x_{m}$
Theorem 2
The probability of $W(t)+x$ starting at x will hit A before B where $B\le x\le A$ is
If $\mu>0$, by letting $A\to\infty$,
Theorem 3
Define the stopping time T by $T=min\{t:W(t)=A\quad or\quad W(t)=B\}$
Let $T_A$ denote the first time W(t) is equal to A, by setting $B\to\infty$
Theorem 4
6. Geometric Brownian Motion
$ln(S(t)/S(0))$ is normally distributed with parameters $(\mu t,\sigma^2t)$.Then $S(t)/S(0)$ has a lognormal distribution with parameters $(\mu t,\sigma^2 t)$E
Theorem 1
The covariance of $S(t_1)$ and $S(t_2)$, for $t_1<t_2$
Let $Q_{1}=S\left(t_{1}\right) / S(0)=e^{\mu t_{1}+\sigma Z\left(t_{1}\right)}$ and $Q_{2}=S\left(t_{2}\right) / S\left(t_{1}\right)=e^{\mu\left(t_{2}-t_{1}\right)+\sigma Z\left(t_{2}-t_{1}\right)}$
Suppose $S_1\left(t\right)=S_1(0)e^{\mu_1 t+\sigma_1 Z_2\left(t\right)}$ and $S_2\left(t\right)=S_2(0)e^{\mu_2 t+\sigma_2 Z_2\left(t\right)}$
7. Price jump
$S_J(t)$ denote the stock price (with jump) at time t
Set $\mu=r-\sigma^2/2+\lambda(1-E[J])$
If the jumps $J_i$ have a lognormal distribution $X_i=ln(J_i),i\ge 1$ with mean $\mu_0$ and variance $\sigma_0^2$.The no-arbitrage cost of a European call option having strike price K and expiration time T is
eq to
where
A jump is called pure if the jump happens at a specific time
where
Under the above assumption, the no-arbitrage cost of a European call option having strike price K and expiration time T is given by