【推导】BS PDE To BS Model
基于 ChiuFai WONG 教授的FM2课件中从 BS-PDE 到 BS-MODEL 的推导过程;
带有个人理解;
预备知识
Black-Scholes partial differential equation
with boundary conditions
$S(t)$ with Brownian motion $Z(t)$ has the following features
Step 1 换元化简
In order to get rid of $S \frac{\partial C}{\partial S}$ and $S^{2} \frac{\partial^{2} C}{\partial S^{2}}$ in Black-Scholes equation, we set
这步主要排除偏导前 S 的影响, 同时为了配合 S 把 K 消除
So we have
Placing these expressions into the Black-Scholes partial differential equation and simplifying, we have
where $k=2\frac r{\sigma^{2}}$. The initial condition becomes
In order to eliminate $v$ and $\frac{\partial v}{\partial x}$, we set
Computing the partials of $v$ in terms of $x$ and $\tau$ , we have
Placing these expressions into the partial differential equation
So we can obtain an equation by choosing
We then have the heat equation
with initial condition
Step 2 使用Laplace变换的方法求热传导公式
知识点回顾 Fourier Transform
Define
where $\mathfrak{L}_{s}$ is the Laplace operator with parameter $s$. Then, we have
Its characteristic equation is $r^2-s=0$. The roots are $r_1=\sqrt{s},r_2=-\sqrt{s}$
The homogeneous solution is
Before calculating particular solution, we need Definition 4.12 and Theorem 4.13
Definition 4.12
Define error function $\operatorname{erf}(x)=\frac{1}{\sqrt{\pi}} \int_{-x}^{x} e^{-t^{2}} d t=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t$ and complementary error function $\operatorname{erfc}(x)=1-\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} d t$
Theorem 4.13
Suppose $\frac{\partial u}{\partial \tau}=\frac{\partial^{2} u}{\partial x^{2}}$ with $u(x, 0)=u(\infty, \tau)=0, u(0, \tau)=1$ . Then we have
- $u(x, \tau)=\frac{2}{\sqrt{\pi}} \int_{\frac{x}{2 \sqrt{\tau}}}^{\infty} e^{-t^{2}} d t$ .
- $\mathfrak{L}_{s}\left(\frac{1}{2 \sqrt{\pi \tau}} e^{-\frac{x^{2}}{4 \tau}}\right)=\frac{e^{-x \sqrt{s}}}{2 \sqrt{s}} \text { for } x>0$ .
proof 1
Let $\xi=\frac{x}{\sqrt{\tau}}$ such that $u(x, \tau)=U(\xi)$
此处的 $U$ 与之前的不相同,这里表示的是以 $\xi$ 为变量的 $u$ 的另外一个形式
Recall $\int_{0}^{\infty} e^{-\frac{s^{2}}{4}} d s=\sqrt{\pi}$ . We have $D=1, \quad C=-\frac{1}{\sqrt{\pi}}$
proof 2
We have found that
So we have both $u(x,\tau)$ and $U(x,s)$
Since $\mathfrak{L}_{s}\left(f^{\prime}(\tau)\right)=s \mathfrak{L}_{s}(f(\tau))-\lim _{\tau \rightarrow 0^{+}} f(\tau)$,
第三行则是考虑到了此类变换的求导性质
- $f^{(n)}(\tau)\leftrightarrow(s)^ng(s)$
- $(-i\tau)^nf(\tau)\leftrightarrow g^{(n)}(s)$
We have
同时除 $x$ 并且消掉 $\tau$ 后得到
Let us come back to particular solution.
The Wronskian of $y_1(x)$ and $y_2(x)$ is
Recall that
Then, the particular solution is
with the computating of Nonhomogeneous Equations
So
11th ODE教材中写到,对于求积的下限 $t_0$ “ t0 is any conveniently chosen point in interval I ”
Thus, to get $u(x,\tau)$ it has to be done inverse Laplace operation
Step 3 将系数代回
It is convenient to make the change of variable $x_{1}=\frac{\xi-x}{\sqrt{2 \tau}}$, so that
Similarly, $I_{2}=e^{\frac{1}{2}(k-1) x+\frac{1}{4}(k-1)^{2} \tau} N\left(d_{2}\right)$